Обучение математике в начальной школе имеет очень важное значение. Именно этот предмет при его успешном изучении создаст предпосылки для умственной деятельности школьника в среднем и старшем звене.
Математика как предмет формирует устойчивый познавательный интерес и навыки логического мышления. Математические задания способствуют развитию у ребенка мышления, внимания, наблюдательности, строгой последовательности рассуждения и творческого воображения.
Сегодняшний мир претерпевает значительные изменения, которые предъявляют новые требования к человеку. Если школьник в будущем хочет активно участвовать во всех сферах жизни общества, то ему нужно проявлять творческую активность, непрерывно самосовершенствоваться и развивать свои индивидуальные способности. А вот этому как раз и должна научить ребенка школа.
К сожалению, обучение младших школьников чаще всего проводится по традиционной системе, когда самым распространенным способом на уроке остается организация действий обучающихся по образцу, то есть большинство математических заданий являются тренировочными упражнениями, которые не требуют инициативы и творчества детей. Приоритетной тенденцией является заучивание учеником учебного материала, запоминание приемов вычислений и решение задач по готовому алгоритму.
Надо сказать, что уже сейчас многие педагоги разрабатывают технологии обучения школьников математике, которые предусматривают решение детьми нестандартных задач, то есть тех, которые формируют самостоятельность мышления и познавательную активность. Основной целью школьного обучения на данном этапе становится развитие поискового, исследовательского мышления детей.
Соответственно, задачи современного образования на сегодняшний день сильно изменились. Теперь школа ориентируется не только на то, чтобы дать учащемуся набор определенных знаний, но и на развитие личности ребенка. Все образование направлено на реализацию двух основных целей: образовательная и воспитательная.
Образовательная включает формирование основных математических навыков, умений и знаний.
Развивающая функция обучения направлена на развитие обучающегося, а воспитательная – на формирование у него нравственных ценностей.
В чем же состоит особенность математического обучения? В самом начале своей учебы ребенок мыслит конкретными категориями. В конце начальной школы он должен научиться рассуждать, сравнивать, видеть простые закономерности и делать выводы. То есть, сначала он имеет общее абстрактное представление о понятии, а в конце обучения это общее конкретизируется, дополняется фактами и примерами, а, значит, превращается в истинно научное понятие.
Методы и приемы обучения должны в полной мере развивать мыслительную деятельность ребенка. Это возможно только тогда, когда в процессе учебы ребенок находит привлекательные стороны. То есть, технологии обучения младших школьников должны затрагивать формирование психических качеств – восприятие, память, внимание, мышление. Только тогда обучение станет успешным.
На современном этапе для реализации этих задач основное значение имеют методики. Приведем обзор некоторых из них.
В основе методики по Л. В. Занкову обучение строится на психических функциях ребенка, которые еще не созрели. Методика предполагает три линии развития психики школьника – ум, чувства и волю.
Идея Л. В. Занкова получила свое воплощение в учебной программе изучения математики, автором которой является И. И. Аргинская. Учебный материал здесь предполагает значительную самостоятельная деятельность учащегося по приобретению и усвоению новых знаний. Особое значение придается заданиям с разными формами сравнения. Они даются систематически и с учетом возрастания сложности материала.
Упор обучения делается на деятельность на уроке самих учащихся. Причем, школьники не просто решают и обсуждают задания, а сравнивают, классифицируют, обобщают, находят закономерности. Именно, такая деятельность напрягает ум, пробуждает интеллектуальные чувства, а, значит, дает детям удовольствие от проделанной работы. На таких уроках становится возможным добиться того момента, когда ученики учатся не за оценки, а для получения новых знаний.
Особенность методики И. И. Аргинской является ее гибкость, то есть, учитель использует на уроке каждую высказанную учеником мысль, даже, если она не была намечена планированием педагога. Кроме того, предполагается активно включать в продуктивную деятельность и слабых школьников, оказывая им дозированную помощь.
Методическая концепция Н. Б. Истоминой также строится на принципах развивающего обучения. В основе курса лежит систематическая работа по формированию у школьников таких приемов по изучению математики, как анализ и сравнение, синтез и классификация, обобщение.
Методика Н. Б. Истоминой направлена не только на отработку необходимых знаний, навыков и умений, но и на совершенствование логического мышления. Особенностью программы является применение специальных методических приемов к отработке общих методов математических операций, которые позволят учесть индивидуальные способности отдельного ученика.
Использование данного учебно-методического комплекса позволяет создать на уроке благоприятную атмосферу, в которой дети свободно высказывают свое мнение, участвуют в обсуждении и получают, если необходимо, помощь учителя. Для развития ребенка в учебник включены задания творческого и поискового характера, выполнение которых связано с опытом ребенка, ранее полученными знаниями, а, возможно, с догадкой.
В методике Н. Б. Истоминой систематически и целенаправленно осуществляется работа по развитию мыслительной активности учащегося.
Одной из традиционных методик является курс обучения математике младших школьников М. И. Моро. Ведущим принципом курса является умелое сочетание обучения и воспитания, практическая направленность материала, выработка необходимых навыков и умений. В основе методики лежит утверждение о том, что для успешного освоения математики необходимо создать прочную основу для обучения еще в начальных классах.
Традиционная методика формирует у учащихся осознанные, иногда, доведенные до автоматизма, навыки вычислительных действий. Большое внимание в программе уделяется систематическому использованию сравнения, сопоставления, обобщения учебного материала.
Особенностью курса М. И. Моро является то, что изучаемые понятия, взаимосвязи, закономерности применяются при решении конкретных задач. Ведь, решение текстовых задач – это мощное орудие для развития у детей воображения, речи, логического мышления.
Многие специалисты выделяют достоинство данной методики – это предупреждение ошибок учащихся путем выполнения многочисленных тренировочных упражнений с одинаковыми приемами.
Но много говорится и о ее недостатках — программа не в полной мере обеспечивает активизацию мышления школьников на уроках.
Обучение математике младших школьников предполагает, что каждый учитель имеет право выбрать самостоятельно программу, по которой он будет работать. И, все-таки, нужно учесть, что сегодняшнее образование требует усиление активного мышления учащихся. А, ведь, не каждая задача вызывает необходимость в мышлении. Если ученик усвоил способ решения, то достаточно памяти и восприятия, чтобы справиться с предложенным заданием. Другое дело, если перед школьником ставится нестандартная задача, требующая творческого подхода, когда накопленные знания надо применить в новых условиях. Вот, тогда и будет в полной мере осуществляться мыслительная деятельность.
Таким образом, одним из важных факторов, обеспечивающих мыслительную активность – это использование нестандартных, занимательных задач.
Другим способом, пробуждающим мысль ребенка, является применение на уроках математики диалогового обучения. Диалог учит школьника отстаивать свое мнение, ставить вопросы учителю или однокласснику, рецензировать ответы сверстников, объяснять непонятные моменты более слабым ученикам, находить несколько разных способов решения познавательной задачи.
Очень важным условием для активизации мысли и развития познавательного интереса становится создание проблемной ситуации на уроке математики. Она помогает привлечь ученика к учебному материалу, поставить его перед некоторой сложностью, преодолеть которую можно, активизируя при этом мыслительную деятельность.
Активизация умственной работы учащихся будет происходить и в том случае, если в процесс обучения будут включаться такие развивающие операции, как анализ, сравнение, синтез, аналогия, обобщение.
Школьники начальных классов легче найдут различия объектов, чем определят общее между ними. Это связано с их преимущественно наглядно-образным мышлением. Чтобы сравнить и найти общее между объектами ребенок должен перейти от наглядных методов мышления к словесно-логическим.
Сопоставление и сравнение приведет к обнаружению различий и сходства. А это значит, появится возможность классификации, которая проводится по какому-либо признаку.
Таким образом, для успешного результата по обучению математики учителю необходимо включать в процесс ряд приемов, важнейшими из которых являются решение занимательных задач, разбор различных видов учебных заданий, использование проблемной ситуации и применение диалога «учитель-ученик-ученик». На основе этого можно выделить основную задачу обучения математике – учить детей мыслить, рассуждать, выявлять закономерности. На уроке должна быть создана атмосфера поиска, в которой каждый школьник может стать первооткрывателем.
Очень важную роль в математическом развитии детей играет домашняя работа. Многие педагоги придерживаются того мнения, что число домашних заданий необходимо сократить до минимума или вообще отменить. Таким образом, уменьшается нагрузка учащегося, которая негативно сказывается на здоровье.
С другой стороны, глубокое исследование и творческий подход требуют неспешного осмысления, которое должно осуществляться уже вне урока. А, если домашняя работа учащегося будет предполагать не только обучающие функции, но и развивающие, то качество усвоения материала значительно повысится. Таким образом, учитель должен продумывать домашнее задание с той целью, чтобы учащиеся могли приобщаться к творческой и исследовательской деятельности как в школе, так и дома.
В процессе выполнения школьником домашнего задания большая роль принадлежит родителям. Поэтому, основной совет родителям: выполнять домашнее задание по математике ребенок должен сам. Но, это не означает, что ему совсем не должна оказываться помощь. Если школьник не может справиться с решением задания, то можно помочь ему найти правило, с помощью которого решается пример, привести подобное задание, дать возможность ему самостоятельно найти ошибку и исправить ее. Ни в коем случае, не следует выполнять задание за ребенка. Главная обучающая цель и учителя, и родителя одинакова – научить ребенка самому добывать знания, а не получать готовые.
Родителям надо помнить, что приобретаемая книга «Готовые домашние задания» не должна быть в руках школьника. Задача этой книги – помочь родителям проверить правильность домашней работы, а не давать возможность ученику, пользуясь ею, переписать готовые решения. В таких случаях можно вообще забыть о хорошей успеваемости ребенка по предмету.
Формированию общеучебных умений способствует и правильная организация работы школьника дома. Роль родителей — создать условия для работы своего ребенка. Школьник должен выполнять домашнее задание в комнате, где не работает телевизор, и нет других отвлекающих моментов. Нужно помочь ему правильно планировать свое время, например, конкретно выбрать час для выполнения домашнего задания и никогда не откладывать эту работу на самый последний момент. Помощь ребенку при выполнении домашней работы иногда бывает просто необходима. А умелая помощь покажет ему взаимосвязь школы и дома.
Таким образом, родителям для успешного обучения школьника, также, отводится важная роль. Они, ни в коем случае не должны снижать самостоятельность ребенка в учебе, но в то же время умело прийти ему на помощь в случае необходимости.
К записи "Особенности обучения математике младших школьников" оставлено 0 коммент.