Главная » Интересно » Занимательная физика: вращающееся магнитное поле на уроке
08
Dec

Занимательная физика: вращающееся магнитное поле на уроке

Рубрика: Интересно     Комментарии: Комментариев нет

Warning: chmod(): Operation not permitted in /home/veselajashkola/veselajashkola.ru/wp-includes/class-wp-image-editor-gd.php on line 447

Warning: chmod(): Operation not permitted in /home/veselajashkola/veselajashkola.ru/wp-includes/class-wp-image-editor-gd.php on line 447

Под ВМП (Вращающееся Магнитное Поле) подразумевается то поле, градиент магнитного возбуждения которого, не меняясь по модулю, циркулирует со стабильной угловой скоростью.

Наглядный пример

Практическое действие магнитных полей поможет продемонстрировать установка, собранная в домашних условиях. Это вращающийся диск из алюминия, закрепленный на неподвижном импосте.

Если поднести к нему магнит, то можно убедиться, что он не увлекается за магнитом, то есть не намагничивается. Но, если разместить в непосредственной близи вращающийся магнит, то это вызовет неизбежное вращение алюминиевого диска. Почему?

Ответ может показаться простым – вращение магнита вызывают вихревые воздушные потоки, раскручивающие диск. Но все, на самом деле иначе! Поэтому, для доказательства, между диском и магнитом устанавливается органическое или обычное стекло. И, тем не менее, диск вращается, увлекаясь вращением магнита!

Причина в том, что при перемене магнитного поля (а вращающийся магнит именно его и создает) появляется ЭДС (электрическая движущая сила) возбуждения (индукции) , которое способствует возникновению электротоков в алюминиевом диске, обнаруженные впервые физиком А. Фуко (чаще всего их так и называют «токи Фуко») . Появившиеся в диске токи, своим влиянием создают свое, отдельное магнитное поле. А взаимодействие двух полей, вызывает их противодействие и спин алюминиевого диска.

Принцип работы электродвигателя

Проведенный эксперимент порождает вопрос – можно ли без вращения магнита, но с использованием природы переменного тока создать ВМП? Ответ – да, можно! На этом физическом законе построена целая отрасль электротехнического оборудования, в том числе электродвигатели.

Для этого можно взять четыре катушки и расположить их попарно, под 900 относительно друг друга. Затем подавать переменный ток, посменно на одну, а затем на другую пару катушек, но уже через конденсатор. В этом случае на второй паре катушек напряжение сдвинется касательно тока на π/2. Так образуется двухфазный ток.

Если на одной паре катушек нулевое напряжение – магнитное поле отсутствует. На второй паре, в это время напряжение пиковое и МП (магнитное поле) максимально. Попеременное подключение и отключение катушек будет создавать ВМП с изменением направления и постоянной величиной. По сути, был создан электродвигатель, тип которого называется однофазным конденсаторным.

Как создаются трехфазные токи?

Они протекают по четырехжильным проводам. Один играет роль нулевого, а по трем другим подается синусоидальный ток с фазовым сдвигом на 120º. Ели по тому же принципу расположить три обмотки на одной оси под углом 120º и подать на них ток из трех фаз, то результатом будет возникновение трех магнитных вращающихся полей или принцип трехфазного электродвигателя.

Практическое применение

Подача электрического тока по трем фазам, наиболее широко распространена в промышленности, как эффективный способ трансляции энергии. Двигатели и генераторные установки, приводимые в движение трехфазным током, более надежны в эксплуатации, чем однофазные. Их простота в использовании, обусловлена отсутствием необходимости строгой регулировки постоянной частоты вращения, а так же достижение большей мощности.

Тем не менее, двигатели такого типа можно использовать не во всех случаях, так как их обороты зависят от частоты вращения магнитного поля, которое составляет 50Гц. При этом отставание скорости оборотов двигателя, должно быть меньше от вращения магнитного поля вдвое, так как в противном случае не появится эффект магнитного возбуждения. Корректирование скорости вращения ротора электрического двигателя, возможно только при постоянном токе, с помощью реостата.

По этой самой причине трамваи и троллейбусы оснащены двигателями постоянного тока, с возможностью управления частотой вращения. Этот же принцип управления используется на электропоездах, где напряжение переменного тока, в силу перемещения тысячетонных грузов, соответствует 28000V. Преобразование переменного тока в постоянный, происходит за счет выпрямителей, которые и занимают большую часть электровоза.

Все же коэффициент полезного действия в асинхронных двигателях переменного электрического тока достигает 98%. Стоит, так же отметить, что ротор такого двигателя переменного тока состоит из немагнитного материала с преобладающей алюминиевой составляющей. Причина в том, что токи, лучше всего вызывают эффект индукции магнитного поля, именно в алюминии. Пожалуй, единственным ограничением в использовании трехфазного двигателя, является нерегулируемая величина количества оборотов. Но с этой задачей справляются добавочные механизмы такие, как вариаторы или коробки передач. Правда, это ведет к удорожанию агрегата, как и в случае с использованием выпрямителя и реостата для двигателя постоянного тока.

Вот таким образом занимательная физика, вращающееся магнитное поле в частности, помогает человечеству создавать двигатели, и не только, для более комфортного нашего существования.

Автор:    

К записи "Занимательная физика: вращающееся магнитное поле на уроке" оставлено 0 коммент.

Комментарии приветствуются-)